

Why Computer-Based Systems Should be Autonomic

Roy Sterritt

School of Computing and Mathematics,
Faculty of Engineering

University of Ulster
Northern Ireland

r.sterritt@ulster.ac.uk

Mike Hinchey
NASA Goddard Space Flight Center
Software Engineering Laboratory

Greenbelt, MD 20771
USA

michael.g.hinchey@nasa.gov

Abstract

The objective of this paper is to discuss why

computer-based systems should be autonomic, where
autonomicity implies self-managing, often
conceptualized in terms of being self-configuring, self-
healing, self-optimising, self-protecting and self-aware.
We look at motivations for autonomicity, examine how
more and more systems are exhibiting autonomic
behavior, and finally look at future directions.

Keywords: Autonomic Computing, Autonomic
Systems, Self-Managing Systems, Complexity, Total
Cost of Ownership, Future Computing Paradigms.

1. Introduction

Autonomic Computing and other self-managing
initiatives have emerged as a significant vision for the
design of computing based systems. Their goals are the
development of systems that are self-configuring, self-
healing, self-protecting and self-optimizing, among
other self-* properties. The ability to achieve this
selfware is dependant on self-awareness and
environment awareness implemented through a
feedback control loop consisting of sensors and
effectors within the computer based system (providing
the self-monitoring and self-adjusting properties) [1].
Dependability is a long-standing desirable property of
all computer-based systems while complexity has
become a blocking force to achieving this. The
autonomic initiatives offer a means to achieve
dependability while coping with complexity [2].

The Engineering of Computer Based Systems
workshop on Engineering of Autonomic Systems
(EASe) [3][4] aims to establish autonomicity as an
integral part of a computer-based system and explore
techniques, tools, methodologies, and so on, to make
this happen. The spectrum and implications are so wide

that we need to reach out to other research communities
to make this a reality.

The purpose of this paper is to consider why systems
should be autonomic, how many more than we might
first think are already autonomic, and to look to the
future and see what more we need to consider.

2. Facing Life As It Is…

Upon launching the Autonomic Computing initiative,
IBM called on the industry to face up to the ever-
increasing complexity and total cost of ownership.

2.1. Business Realities

• It is estimated that companies now spend

between 33% and 50% of their total cost of
ownership recovering from or preparing against
failures [6].

• Many of these outages, with some estimates at as
high as 40%, are caused by operators themselves
[7].

• 80% of expenditure on IT is spent on operations,
maintenance and minor enhancements [8].

• IBM has been adding about 15,000 people per
year to its service organization in order to assist
customers in dealing with complex platforms [5].
One can assume that other large organizations
are being required to make correspondingly large
expansions to keep ahead (or even to keep up).

These realities together with the complexity and total

cost of ownership (TCO) problem all highlight the need
for a change.

2.2. Complexity

The world is becoming an ever-increasingly complex
place. In terms of computer systems, this complexity
has been confounded by the drive towards cheaper,
faster and smaller hardware, and functionally rich
software. The infiltration of the computer into every
day life has made the reliance on it critical. As such,
there is an increasing need throughout design,
development and operation of computer systems to cope
with this complexity and the inherent uncertainty
within. There is an increasing need to change the way
we view computing; there is a need to realign towards
facing up to computing in a complex world.

The IT industry is a marked success; within a 50 year
period it has grown to become a trillion dollar per year
industry obliterating barriers and setting records with
astonishing regularity [19][20]. Throughout this time
the industry has had a single focus, namely to improve
performance [21] which has resulted in some
breathtaking statistics [22]:

• Performance/price ratio doubles around

every 18 months,
• resulting in 100 fold per decade;
• Progress in the next 18 months will equal

ALL previous progress;
• New storage = sum of all old storage, ever;
• New processing = sum of all old processing;
• Aggregate bandwidth doubles in 8 months.

This performance focus has resulted in the

emergence of a small number of critical inherent
behaviors in the way the industry operates when
designing, developing and deploying hardware,
software, and systems [21]:

• That humans can achieve perfection; that

they avoid making mistakes during
installation, upgrade, maintenance or repair.

• Software will eventually be bug free; the
focus of companies has been to hire better
programmers, and universities to train better
software engineers, in development life-
cycle models.

• Hardware mean-time between failure
(MTBF) is already very large -
approximately 100 years - and will continue
to increase.

• Maintenance costs are a function of the
purchase price of hardware; and as such
with decreasing hardware costs (in terms of
price/performance) results in decrease in
maintenance costs.

When made explicit in this way, it is obvious that
these implicit behaviors are flawed and result in
contributing factors to the complexity problem.

Within the last decade, problems have started to
become more apparent. For an industry that is used to
metrics always rising we saw some key decreases.
Figure 1 [19] highlights that key modern day systems –
cell phones and the internet – have seen a decline in
availability, changing the established trend of their
counterparts.

Figure 1 Systems Availability over the Decades [19]

We increasingly require our complex systems to be
dependable. This is obvious, when one considers how
dependant we have become on our systems and how
much it costs for a single hour of downtime. For
instance, in 2000: $6.5m brokerage operations, $2.5m
credit card authorization and $¼m for eBay
[21][23][24].

2.3. Total Cost of Ownership (TCO)

As hardware gets cheaper, the actual total cost of

ownership – managing the complexity – increases. The
following depicted statistics indicate where some of
these costs lie.

S/W Dist.

2%
Help Desk

17%

E-Mail
5%

Asset Mgt
5%

On-Site Support
18%

Infrastructure
11%

H/W Maint.
9%

Server/Lan Maint.
13%

Management
6%

IMAC
14%

Figure 2 Client Computing TCO (%) [8]

In terms of direct accountable IT costs (Figure 2) the
average costs per desktop is $100-180 per month for
organizations with greater than 5000 employees. Figure
2 indicates online support (18%) and helpdesk (17%)
are the biggest costs; activities like internal management
and control and email support and require 14% and 5%
of costs. A lot of these activities would require less
attention if they contained of more self-management
capability.

Peer Support, 7.9

Casual Learning &
Self Support, 5.7

Formal Learning, 0.7

File & Data Mgt, 1.4

Dev. of Personal
Applications, 1

Downtime, 0.4

Figure 3 Client computing TCO – indirect costs
(hrs/mth) [8]

Figure 3 expresses indirect costs of client computing
in terms of hours per month – where those that are not
employed directly in an IS role and are users of
computing, have to resort to some of their own self help,
peer help and their own administration. It is estimated
that it requires on average 205.2 hr/yr; if you cost this at
$50 an hour these indirect costs amount to $10,260 per
user! As with direct costs, these activities would be
reduced if our systems had more autonomicity.

H/W Failures
40%

Human Error
29%

S/W Corruption
13%

Computer
Viruses

6%

Theft
9%

H/W Destruction
3%

Figure 4 The sources of data loss (Incident rate 6%
of devices per year) [8]

Figure 4 depicts the sources of data loss where
incidents occur on 6% of devices. The value of
data/information/knowledge is commonly
acknowledged within organizations as a valuable asset.
Yet, with client and personal computing, apart from the
expensive direct costs of recovery from major failure,
there is a substantial risk of indirect costs associated
with work lost through ineffective back-up procedures.
Selfware that facilitates smart back-ups, that reduces
situations that cause human error in the first place, and
is more proactive in monitoring the health of the device,
provides the potential to reduce these costs and
incidents of data loss in the first place.

3. Autonomicity is (Already) All Around

Autonomicity is already being built into many
systems in an effort, primarily, to increase dependability
and reduce downtime, but also as a means of achieving
greater usability and user friendliness.

An obvious example, that many of us encounter
every day, is in the operating systems of our home or
work computers, or of our cellphones and PDAs.
These are increasingly being enhanced with
mechanisms for reducing the number of errors we can
make, and coping with updates and additions.

3.1. A Simple Example -Windows XP

Consider the Windows XP operating system as an

example. XP already meets a lot of the requirements
now recognized as necessary to meet the criteria of
being an autonomic system. As always, the four
criteria are interrelated and what contributes to being
“self-healing” may also contribute to “self-optimizing”,
etc.

Self-configuring

 XP, like many other operating systems, is designed
to be installed automatically. The user is guided
through a new installation, even given the option of
accepting a standard installation, or selecting a
customized installation which XP will complete for the
user.

 XP is also self-reconfiguring. The operating
system automatically detects newly installed programs
and newly installed (or connected) hardware devices.
Long gone are the days of needing to install drivers and
download new drivers from manufacturer’s websites.
XP automatically detects new hardware connected, and
installs it appropriately. In most cases, it can even
identify the device and name it correctly. It’s not

surprising that it can do so with newer devices, but it
can successfully identify devices that are many years old
and configure (or re-configure) itself to deal with those.

Self-healing

XP is able to recover from a plethora of errors, all
automatically.

It can detect the unsafe removal of devices and will
attempt to overcome this. It is able to automatically
download patches to deal with new viruses, security
breaches, or merely errors that were undetected before
that version of the operating system was released.
Where an error cannot be recovered from, the operating
system prepares an appropriate report and returns it to
Microsoft.

Self-optimizing

XP is able to download updates and enhancements.
Some of these are for the purposes of self-healing and
self-protecting (we’ve all had experiences of XP’s
vulnerability to hackers and worms) and correcting
previously undetected errors. Others are to enhance the
operation of the system and to improve its performance.

Self-protecting

Just like many other operating systems, XP is able to
protect itself from various errors, such as unsafe
removal of devices, sudden loss of resources, etc.
Additionally it provides a form of checkpointing so that
documents, etc., can be recovered following a crash.

In many cases, this protection takes the simple form
of returning to a state of limited operation, or “safe
state” where current settings and data will be protected
to a certain extent. Subsequently, data and open files
can be restored to that last checkpoint. In other cases,
patches can be downloaded as an automatic update.

Self-aware

To perform many of these functions, XP must have a
certain degree of self-awareness. It must be aware of its
current status (so that it can recover from crashes, etc.)
as well of its peripherals, etc. More importantly, it
must be aware of the current version of the operating
system that it itself is comprised of. Only in this way
will it know which updates, patches, etc., to download
and install.

The Dynamic Systems Initiative (DSI) is Microsoft’s
initiative to facilitate this self-awareness through
knowledge (creation, modification, transfer, and
operation) about the system for the lifecycle of that

system. These are seen as core principles in addressing
the complexity and manageability challenges.

3.2. A More Complex Example – NASA
Missions

At the other end of the scale, we have systems which

are less common and less likely to be encountered on a
regular basis, but which attract significant publicity,
particularly when they fail. These are exemplified by
NASA missions, amongst others.

NASA missions require the use of complex hardware
and software systems, and embedded systems, often
with hard real-time requirements. Most missions
involve significant degrees of autonomous behavior,
often over significant periods of time. There are
missions which are intended only to survive for a short
period, and others which will continue for decades, with
periodic updates to both hardware and software. Some
of these updates are pre-planned; others, such as with
the Hubble Space Telescope, were not planned but now
will be undertaken (with updates performed either by
astronauts or via a robotic arm).

While missions typically have human monitors,
many missions involve very little human intervention,
and then often only in extreme circumstances. It has
been argued that NASA systems should be autonomic
[17], and that all autonomous systems should be
autonomic by necessity. Indeed, the trend is in that
direction in forthcoming NASA missions.

We take as our example, a NASA concept mission,
ANTS, which has been identified [18] as a prime
example of an autonomic system.

3.2.1 ANTS

ANTS is a concept mission that involves the use of

intelligent swarms of spacecraft. From a suitable point
in space (called a Lagrangian), 1000 small spacecraft
will be launched towards the asteroid belt.

As many as 60% to 70% of these will be destroyed
immediately on reaching the asteroid belt. Those that
survive will coordinate into groups, under the control of
a leader, which will make decisions for future
investigations of particular asteroids based on the results
returned to it by individual craft which are equipped
with various types of instruments.

Self-configuring

ANTS will continue to prospect thousands of

asteroids per year with large but limited resources. It is
estimated that there will be approximately one month of
optimal science operations at each asteroid prospected.

A full suite of scientific instruments will be deployed at
each asteroid. ANTS resources will be configured and
re-configured to support concurrent operations at
hundreds of asteroids over a period of time.

The overall ANTS mission architecture calls for
specialized spacecraft that support division of labor
(rulers, messengers) and optimal operations by
specialists (workers). A major feature of the
architecture is support for cooperation among the
spacecraft to achieve mission goals. The architecture
supports swarm-level mission-directed behaviors, sub-
swarm levels for regional coverage and resource-
sharing, team/worker groups for coordinated science
operations and individual autonomous behaviors. These
organizational levels are not static but evolve and self-
configure as the need arises. As asteroids of interest are
identified, appropriate teams of spacecraft are
configured to realize optimal science operations at the
asteroids. When the science operations are completed,
the team disperses for possible reconfiguration at
another asteroid site. This process of configuring and
reconfiguring continues throughout the life of the ANTS
mission.

Reconfiguring may also be required as the result of a
failure, such as the loss of, or damage to, a worker due
to collision with an asteroid (in which case the role may
be assumed by another worker, which will be allocated
the task and resources of the original).

Self-healing

ANTS is self-healing not only in that it can recover

from mistakes, but self-healing in that it can recover
from failure, including damage from outside forces. In
the case of ANTS, these are non-malicious sources:
collision with an asteroid, or another spacecraft, etc.

ANTS mission self-healing scenarios span the range
from negligible to severe. A negligible example would
be where an instrument is damaged due to a collision or
is malfunctioning. In such a scenario, the self-healing
behavior would be the simple action of deleting the
instrument from the list of functioning instruments. A
severe example would arise when the team loses so
many workers it can no longer conduct science
operations. In this case, the self-healing behavior would
include advising the mission control center and
requesting the launch of replacement spacecraft, which
would be incorporated into the team, which in turn
would initiate necessary self-configuration and self-
optimization.

Individual ANTS spacecraft will have self-healing
capabilities also. For example, an individual may have
the capability of detecting corrupted code (software),
causing it to request a copy of the affected software
from another individual in the team, enabling the

corrupted spacecraft to restore itself to a known
operational state.

Self-optimizing

Optimization of ANTS is performed at the individual

level as well as at the system level.
Optimization at the ruler level is primarily through

learning. Over time, rulers will collect data on different
types of asteroids and will be able to determine which
asteroids are of interest, and which are too difficult to
orbit or collect data from. This provides optimization
in that the system will not waste time on asteroids that
are not of interest, or endanger spacecraft examining
asteroids that are too dangerous to orbit.

Optimization for messengers is achieved through
positioning, in that messengers may constantly adjust
their positioning in order to provide reliable
communications between rulers and workers, as well as
with mission control back on Earth.

Optimization at the worker level is again achieved
through learning, as workers may automatically skip
over asteroids that it can determine will not be of
interest.

Self-protecting

The significant causes of failure in ANTS will be

collisions (with both asteroids and other spacecraft), and
solar storms.

Collision avoidance through maneuvering is a major
challenge for the ANTS mission, and is still under
development. Clearly there will be opportunity for
individual ANTS to coordinate with other spacecraft to
adjust their orbits and trajectories as appropriate.
Avoiding asteroids is a more significant problem due to
the highly dynamic trajectories of the objects in the
asteroid belt. Significant planning will be required to
avoid putting spacecraft in the path of asteroids and
other spacecraft.

In addition, charged particles from solar storms could
subject spacecraft to degradation of sensors and
electronic components. The increased solar wind from
solar storms could also affect the orbits and trajectories
of the ANTS individuals and thereby could jeopardize
the mission. One possible self-protection mechanism
would involve a capability of the ruler to receive a
warning message from the mission control center on
Earth. An alternative mechanism would be to provide
the ruler with a solar storm sensing capability through
on-board, direct observation of the solar disk. When the
ruler recognizes that a solar storm threat exists, the ruler
would invoke its goal to protect the mission from harm
from the effects of the solar storm, and issue

instructions for each spacecraft to “fold” the solar sail
(panel) is uses to charge its power sources.

Self-aware

Clearly, the above properties require the ANTS

mission to be both aware of its environment and self-
aware.

The system must be aware of the positions and
trajectories of other spacecraft in the mission, of
positions of asteroids and their trajectories, as well as of
the status of instruments and solar sails.

4. Aiming For What You Would Like It To
Be…

4.1. Future Computer-Based System Paradigms

Over the years we have seen the developments and
gradual move from M:1 computing (1 computer for
many people; the mainframe era), to 1:1 computing
(personal computing era) towards the future era of 1:M
computing where as individuals we utilize many
computing devices, both in our working and personal
daily lives. Bud Lawson in his ‘Rebirth of the
Computer Industry’ ACM commentary [5] highlights
that the complexity issues started long ago when the
first general purpose mainframe was created and has
increasingly gotten worse since resulting in a
fundamental need to change to overcome the direction
in which the industry is heading.

The driving force behind the future paradigms of
computing is the increasing convergence between
technologies [10]:

• proliferation of devices
• wireless networking
• mobile software

as well as industries converging; e.g., the Computer and
Telecommunications industries. Also the increasing
fuzziness of boundaries between devices used at work
for business or in the home for entertainment (who ever
had a mainframe at home?!) plays it part.

As Weiser first described what has become know as
ubiquitous computing [11]; “For thirty years most
interface design, and most computer design, has been
headed down the path of the “dramatic” machine. Its
highest ideal is to make a computer so exciting, so
wonderful, so interesting, that we never want to be
without it. A less-traveled path I call the “invisible”; its
highest ideal is to make a computer so embedded, so
fitting, so natural, that we use it without even thinking
about it”.

These ideas of bringing computers into our world,
rather than asking us to enter into the computer’s world,

has become widespread among researchers — albeit
often under the alternative names of “pervasive
computing”, “ambient computing”, or the term to
emerge from the communications research community,
“ambient networks”, often referred to as “ambient
intelligence”, expressing the need for more intelligent
computer networks. Other (more explicit) research
names for future computing paradigms include
“invisible computing” and “world computing” to
express the concept of, in effect, a single system with
(potentially) billions of “networked information
devices”.

Behind these different terms and research areas,

emphasis is made on three properties [10]:
1. nomadic,
2. embedded and
3. invisible.

This reality of an increasingly networked world has
also established the notion that computation need no
longer be confined to computers. Instead, computation
can be proliferated as a collection of processes, moving
among desktops, mobiles, PDAs, servers, and any
number of other devices, accumulating and re–
accumulating themselves on the fly to meet the task at
hand [10]. This computing vision goes by many names:
distributed computing, Web services, Person-to-Person,
Peer-to-Peer, organic IT, utility computing, and grid
computing.

A grid infrastructure promises seamless access to
computational and storage resources, and offers the
possibility of cheap, ubiquitous distributed computing.
Grid technology will have a fundamental impact on the
economy by creating new areas, such as e-Government
and e-Health, new business opportunities, such as
computational and data storage services, and changing
business models, such as greater organizational and
service devolution [12][13]. The Grid is a very active
area of research and development; with the number of
academic grids jumping six fold in 2002 [14]. Its aim to
fulfill the vision of Corbato’s Multics [14] – like a
utility company, a massive resource to which a customer
gives his or her computational or storage needs [16].

With the ever increasing complexity and TCO from
the M:1, 1:1 eras moving to 1:M era with all these
billions of devices, is the future one of chaos?

For 1:M computing to become a successful reality
will require a self-managing approach such as
autonomic computing (along with other things such as
new business models).

These future computer paradigms such as grid
computing, utility computing, pervasive computing,
ubiquitous computing, invisible computing, world
computing, ambient intelligence, ambient networks, and
so on, all will reside within the ECBS domain – a fusion

of systems and software engineering - due to the fact
that these systems will be highly dependent on devices
and embedded systems. All these next generation
infrastructures in one form or another will require an
autonomic – self-managing – infrastructure.

The TC-ECBS with its focus on computer-based
systems which incorporates the area of embedded
systems is in a prime position to meet the future with
these new paradigms.

5. Conclusion

This paper has recapped some problems facing the

computer industry, and described its envisaged future
paradigms, highlighting how the emerging autonomic
and self-managing initiatives are necessary for current
and future needs.

In order for Autonomic Computing to meet these
needs, open standards and technologies will be
necessary.

These précis of past, current, and future, can only
lead to the conclusion that computer-based systems
should be autonomic.

Acknowledgements

The development of this paper was supported at
University of Ulster by the Centre for Software Process
Technologies (CSPT), funded by Invest NI through the
Centres of Excellence Programme, under the EU Peace
II initiative.

Part of this work has been supported by the NASA
Office of Systems and Mission Assurance (OSMA)
through its Software Assurance Research Program
(SARP) project, Formal Approaches to Swarm
Technologies (FAST), and by NASA Goddard Space
Flight Center, Software Engineering Laboratory (Code
581).

References

[1] Sterritt, R., Towards Autonomic Computing: Effective Event

Management, Proceedings of 27th Annual IEEE/NASA Software
Engineering Workshop (SEW), Maryland, USA, December 3-5,
IEEE Computer Society, Pp 40-47

[2] Sterritt, R. and Bustard, D.W., Autonomic Computing: a Means
of Achieving Dependability? Proceedings of 10th IEEE
International Conference on the Engineering of Computer Based
Systems (ECBS ’03), Huntsville, Alabama, USA, April 7-11,
IEEE CS Press, Pp 247-251

[3] Workshop on the Engineering of Autonomic Systems (EASe),
Proceedings of 11th IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems
(ECBS'04), May 24 - 27, 2004 Brno, Czech Republic, p441.

[4] Sterritt, R. and Bapty, T., (eds.) Engineering Autonomic
Systems, special issue of IEEE Transactions on Systems, Man
and Cybernetics, forthcoming (see http://www.ulster.ac.uk/ease)

[5] Lawson, H.W., Rebirth of the Computer Industry,
Communications of the ACM, 45 (6), June 2002.

[6] Patterson, D.A., Brown, A., Broadwell, P., Candea, G. , Chen,
M., Cutler, J., Enriquez, P., Fox, A., Kiciman, E., Merzbacher,
M., Oppenhiemer, D., Sastry, N., Tetzlaff, W., Traupman, J.,
Treuhaft, N., Recovery-Oriented Computing (ROC): Motivation,
Definition, Techniques, and Case Studies, U.C. Berkeley
Computer Science Technical Report, UCB//CSD-02-1175,
University of California, Berkeley, March 15, 2002..

[7] Patterson, D., 2002, Availability and Maintainability
Performance: New Focus for a New Century, USENIX
Conference on File and Storage Technologies (FAST ’02),
Keynote Address, Monterey, CA, 29 January, 2002.

[8] Ganek, A.G., Hilkner, C.P., Sweitzer, J.W., Miller, B. and
Hellerstein, J.L. The response to IT complexity: autonomic
computing, Proceedings 3rd IEEE International Symposium on
Network Computing and Applications, (NCA 2004), Aug. 30 -
Sept. 1, 2004, pp 151 – 157

[9] Bantz D.F., “Autonomic Personal Computing”, presentation at
Pace University, White Plains, University of Southern Maine,
25th January 2003.

[10] The Future of Computing Project;
http://www.thefurtureofcomputing.org, 2004

[11] Weiser, M., Creating the Invisible Interface. Symposium on User
Interface Software and Technology, New York, NY, ACM Press,
1994.

[12] De Roure, D., Jennings, N. and Shadbolt, N. A Future e-Science
Infastructure aka Research Agenda for the Semantic Grid,
EPSRC/DTI Core e-Science Programme, December 2001.

[13] Foster, I., Kesselman, C., Nick, J.M. and Tuecke, S., The
Physiology of the Grid – An Open Grid Service Architecture for
Distributed Systems Integration, June 2002.
http://www.globus.org/research/papers/ogsa.pdf

[14] Malik, O., Ian Foster = Grid Computing, Grid Today, October
2002.

[15] Corbato, F.J. and Vyssotsky, V.A., Introduction and Overview of
Multics System, Proceedings of AFIPS FJCC, 1965.

[16] Ledlie, J., Shneidman, J., Seltzer, M. and Huth, J., Scooped,
Again. Proceedings of IPTPS 2003, Berkeley, CA, February
2003.

[17] Truszkowski, W.F., Hinchey, M.G., Rash, J.L. and Rouff, C.A.
Autonomous and Autonomic Systems: A Paradigm for Future
Space Exploration Missions. IEEE Trans. on Systems, Man and
Cybernetics, Part C, 2006, to appear.

[18] Truszkowski, W., Rash, J., Rouff, C. and Hinchey, M. Asteroid
Exploration with Autonomic Systems. Proceedings 11th IEEE
International Conference on Engineering Computer-Based
Systems (ECBS), Workshop on Engineering Autonomic Systems
(EASe), Brno, Czech Republic, 24-27 May 2004, pp 484-489,
IEEE Computer Society Press.

[19] Gray, J., “Dependability in the Internet Era”,
http://research.microsoft.com/˜gray/talks/InternetAvailability.ppt

[20] Horn, P., Invited Talk to the National Academy of Engineering at
Harvard University, March 8, 2001

[21] Patterson, D., “Recovery-Oriented Computing”, Keynote, at
High Performance Transaction Systems Workshop (HPTS),
October 2001

[22] Gray, J., “What Next? A dozen remaining IT problems”, Turing
Award Lecture, FCRC, May 1999

[23] Internetweek, “Per Hour Downtime Costs”, 4/3/2000
[24] Kembel, R., Fibre Channel: A Comprehensive Introduction,

2000.
[25] Microsoft Corporation, “Dynamic Systems Initiative Overview”,

White Paper, March 31, 2004, revised November 15, 2004.

